961 research outputs found

    Enabling More Accurate and Efficient Structured Prediction

    Get PDF
    Machine learning practitioners often face a fundamental trade-off between expressiveness and computation time: on average, more accurate, expressive models tend to be more computationally intensive both at training and test time. While this trade-off is always applicable, it is acutely present in the setting of structured prediction, where the joint prediction of multiple output variables often creates two primary, inter-related bottlenecks: inference and feature computation time. In this thesis, we address this trade-off at test-time by presenting frameworks that enable more accurate and efficient structured prediction by addressing each of the bottlenecks specifically. First, we develop a framework based on a cascade of models, where the goal is to control test-time complexity even as features are added that increase inference time (even exponentially). We call this framework Structured Prediction Cascades (SPC); we develop SPC in the context of exact inference and then extend the framework to handle the approximate case. Next, we develop a framework for the setting where the feature computation is explicitly the bottleneck, in which we learn to selectively evaluate features within an instance of the mode. This second framework is referred to as Dynamic Structured Model Selection (DMS), and is once again developed for a simpler, restricted model before being extended to handle a much more complex setting. For both cases, we evaluate our methods on several benchmark datasets, and we find that it is possible to dramatically improve the efficiency and accuracy of structured prediction

    Design and technical direction of The Dancing Donkey

    Get PDF

    A Solid-State 11B NMR and Computational Study of Boron Electric Field Gradient and Chemical Shift Tensors in Boronic Acids and Boronic Esters

    Get PDF
    The results of a solid-state 11B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (Ω) on the order of 10−40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the 11B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between Ω and the dihedral angle (CCBO), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both Ω and the 11B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of CCBO, and the electron-donating or withdrawing substituents bound to the aromatic ring.Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation

    Determinants of Mobile Broadband Affordability: A Cross-National Comparison

    Get PDF
    There is little understanding of what determines mobile broadband affordability in different countries. We address this problem by exploring to what extent policy, regulation, government, and governance affect mobile broadband affordability. Our results show that when controlling for wealth, education and other factors, competition to provide mobile services, financial investment in information and communication technologies (ICTs), and income inequality are all important variables in determining mobile broadband affordability. Our findings related to financial investment suggest that service providers and other stakeholders are still recouping the cost of deploying the infrastructure necessary to provide mobile services, and have not yet achieved the economy of scale required for the price of mobile broadband to begin to fall. Although policy initiatives and income inequality are important determinants of mobile broadband affordability, we find no evidence that political structure and processes (e.g., the level of democracy), telecommunications regulation, or public-sector governance matter

    Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, Bahamas

    Get PDF
    Carbonate muds deposited on continental shelves are abundant and well-preserved throughout the geologic record because shelf strata are difficult to subduct and peritidal carbonate units often form thick, rheologically strong units that resist penetrative deformation. Much of what we know about pre-Mesozoic ocean chemistry, carbon cycling, and global change is derived from isotope and trace element geochemistry of platform carbonates. Paleomagnetic data from the same sediments would be invaluable, placing records of paleolatitude, paleogeography, and perturbations to the geomagnetic field in the context and relative chronology of chemostratigraphy. To investigate the depositional and early diagenetic processes that contribute to magneitzation in carbonates, we surveyed over 500 core and surface samples of peritidal, often microbially bound carbonate muds spanning the last not, vert, similar 1000 yr and deposited on top of Pleistocene aeolianites in the Triple Goose Creek region of northwest Andros Island, Bahamas. Sedimentological, geochemical, magnetic and ferromagnetic resonance properties divide the sediment columns into three biogeochemical zones. In the upper sediments, the dominant magnetic mineral is magnetite, produced by magnetotactic bacteria and dissimiliatory microbial iron metabolism. At lower depths, above or near mean tide level, microbial iron reduction dissolves most of the magnetic particles in the sediment. In some cores, magnetic iron sulfides precipitate in a bottom zone of sulfate reduction, likely coupled to the oxidation of decaying mangrove roots. The remanent magnetization preserved in all oriented samples appears indistinguishable from the modern local geomagnetic field, which reflects the post-depositional origin of magnetic particles in the lower zone of the parasequence. While we cannot comment on the effects of late-stage diagenesis or metamorphism on remanence in carbonates, we postulate that early-cemented, thin-laminated parasequence tops in ancient peritidal carbonates are mostly likely to preserve syn-depositional paleomagnetic directions and magnetofossil stratigraphies

    RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity.

    Get PDF
    The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations

    A passive vibration isolation stack for LIGO: Design, modeling, and testing

    Get PDF
    Multiple-stage seismic vibration isolation stacks, which consist of alternating layers of stiff masses and compliant springs, can provide significant passive filtering of ground vibration for experiments and equipment that are sensitive to mechanical noise. We describe the design, modeling and testing of a prototype of a stack suitable for use in the Laser Interferometer Gravitational-wave Observatory (LIGO). This is a four-stage elastomer (spring) and stainless steel (mass) stack, consisting of a table resting on three separate legs of three layers each. The viscoelastic properties of elastomer springs are exploited to damp the stack's normal modes while providing rapid roll-off of stack transmission above these modal frequencies. The stack's transmission of base motion to top motion was measured in vacuum and compared with three-dimensional finite-element models. In one tested configuration, at 100 Hz, horizontal transmission was 10^–7, vertical transmission was 3×10^–6, and the cross-coupling terms were between these values
    corecore